B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU - 560004

END SEMESTER EXAMINATION - OCTOBER 2022

M.Sc. in Mathematics - II Semester
 Complex Analysis

Course Code: MM202T

Duration: 3 Hours

QP Code: 21002
Max marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. (a) Define harmonic functions and evaluate $\int \frac{z-3}{z^{2}+2 z+5} d z$ where $C:|z+1-i|=2$.
(b) State and Prove Cauchy's integral formula for derivative and use it to evaluate $\int_{|z|=1} \frac{\cos 2}{(2 z-1)(z-3)} d z$.
(c) State and prove Cauchy's theorem for a disk.
2. (a) State and prove Morera's theorem. Also evaluate $\int_{C} \frac{2 z}{z^{3}-1} d z \quad C:|z|=3$
(b) If $\mathrm{f}(\mathrm{z})$ is analytic region C of complex plane, then prove that the following statements are equivalent (i) $f^{n}(a)=0, \forall n=0,1,2, \ldots$ at a point ' a ' in C. (ii) $\mathrm{f}(\mathrm{z})=0$ is a neighbourhood K of a point ' a ' in C. (iii) $f(z)=0$ in C.
3. (a) Find the radius of convergence of (i) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} z^{n}$, (ii) $\sum_{n=0}^{\infty} \frac{z^{n}}{n!n^{n}}$
(b) Let $f(z)=\sum_{n=1}^{\infty} a_{n}(z-a)^{n}$ in $\{|z-a|<R\}$ where R is radius of convergence of the power series. Then prove that the Taylor's expansion of $f(z)$ in the neighborhood of a point ' a ' is exactly the given power series.
(c) Find the Laurent's expansion of $f(z)=\sinh \left(z+\frac{1}{z}\right)$ for $|z|>0$.
4. (a) State and prove Taylor's theorem.
(b) Let $f(z)$ be analytic function having as isolated singularity at $z=a$. If $|f(z)|$ is bounded in a neighbourhood $\{0<|z-a|<r\}$ then prove that $f(z)$ has a removable singularity at $z=a$.
(c) State and prove open mapping theorem.
5. Evaluate the following (i) $\int_{0}^{2 \pi} \frac{d \theta}{a+b \text { co }}(a>b>0)$ (ii) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
(iii) $\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^{2}-2 x+2\right)}$

BMSCW LIBRARY
 QUESTION PAPER

6. (a) Outline the argument principle and explain why it is called by that name.
(b) Let $f(z)$ be a non-constant analytic function in a region D of the complex plane. Then Prove that $|f(z)|$ has no maximum in D .
(c) Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circle $|z|=1$ and $|z|=2$.
(4+5+5)
7. (a) State and prove Phragmen Lindel of theorem
(b) State and prove Weierstrass factorization theorem.
8. (a) Let $\mathrm{f}(\mathrm{z})$ be analytic in the region $|z|<\rho \quad$ and let $z=r e^{i \theta}$ be any point of this region. Then prove that $f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(R e^{i \theta}\right) d \phi}{R^{2}-2 R r \cos (\theta+\phi)+r^{2}}$
(b) Sate and prove Poisson's-Jensen formula.
